The Effect of Hydrogen Sulfide on Acridine Hydrodenitrogenation on a Sulfided NiMo/Al₂O₃ Catalyst

NOTES

Masatoshi Nagai

Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184 (Received June 14, 1990)

Synopsis. The effect of hydrogen sulfide on acridine hydrodenitrogenation over a sulfided NiMo/Al₂O₃ catalyst at 280—380 °C and 10.1 MPa total pressure was studied. The result showed that the presence of H₂S depressed the total C–N hydrogenolysis at a low $P_{\rm H_2S}/P_{\rm H_2}$ ratio of 1.1—79×10⁻⁵, but that it rarely affected the C–N hydrogenolysis at a ratio above 0.003.

Previous studies^{1,2)} have shown that the presence of various sulfur compounds depressed the C-N hydrogenolysis reactions in the hydrodenitrogenation of acridine and carbazole on the Mo/Al₂O₃ catalysts at 10.1 MPa total pressure. Satterfield et al.^{3,4)} reported, however, that the presence of hydrogen sulfide increased the overall rate of hydrodenitrogenation of pyridine or quinoline on sulfided NiMo/Al₂O₃ catalysts. Recently, Yan et al.⁵⁾ reported the promoting effect on quinoline hydrodenitrogenation over a sulfided CoMo/Al₂O₃ catalyst. Nickel- or cobaltpromoted molybdenum catalysts might be more active for the C-N hydrogenolysis of nitrogen compounds in the presence of H₂S, as well as the C-S hydrogenolysis. Moreover, the presence of H₂S at a high H₂S/H₂ ratio not only changed the sulfided state of the catalyst's surface⁶⁾ but also caused the reduction of organic compounds on $\mbox{MoS}_{2}.^{7)}\,$ In the present work, the effect of the presence of H₂S on acridine hydrodenitrogenation on a sulfided NiMo/Al₂O₃ catalyst is discussed on basis of changes in the ratio of $P_{\rm H_2S}/P_{\rm H_2}$ and the reaction temperature.

Experimental

The study was carried out in a continuous-flow fixed-bed reactor, using the NiMo/Al₂O₃ catalyst and procedures described previously. The catalyst was preheated in air at 450° C in the reactor before pretreatment. Sulfiding was accomplished *in situ* in a flowing 10 vol% H₂S/H₂ atmosphere $(6 \text{ dm}^3 \text{ h}^{-1})$ at 400° C for 3 h after the oxidized catalyst was

reduced at 400°C and 10.1 MPa pressure for 3 h. The experiment was performed at 280—380°C and 10.1 MPa total pressure. A solution of xylene containing 0.25 wt% acridine was fed at a rate of 20 cm³ h⁻¹ into the reactor with flowing hydrogen at 30 dm³ h⁻¹. Ethanethiol (0.1 kPa) was added to the feed in order to maintain the sulfided state of the catalyst during the reaction. Ethanethiol was readily decomposable to form H₂S at 10.1 MPa total pressure. No ethanethiol was observed in the reaction products. The reaction reached a steady state in about 3 h. The liquid reaction products were analyzed by FID gas chromatography.

Results and Discussion

The major denitrogenated product was dicyclohexylmethane with a small amount of benzylcyclohexane. Acridine was completely hydrogenated to yield perhydroacridine through *cis*- and *trans*-1,2,3,4,4a,9,9a,10-octahydroacridines, even at 280°C, while 1,2,3,4,5,6,7,8-octahydroacridine was formed preferentially rather than the 1,2,3,4,4a,9,9a,10-octahydro compounds above 300°C.

The effect of H₂S on acridine hydrodenitrogenation on the sulfided catalyst at 330°C is shown in Fig. 1. The presence of H₂S decreased the concentration of dicyclohexylmethane and increased those of octahydroacridine and perhydroacridine. This result showed that the presence of H2S depressed the C-N hydrogenolysis of perhydroacridine to dicyclohexylmethane at 330°C. The concentration of dicyclohexylmethane was decreased to 0.18 wt% from 0.2 wt% by the addition of $P_{\text{H}_2\text{S}}$ of 7.0 kPa from 0.10 kPa at 330°C, which corresponded to a ratio of $P_{\text{H}_2\text{S}}/P_{\text{H}_2}$ varying from 7.9×10^{-4} to 1.1×10^{-5} . Figure 2 shows, however, that at 280°C the presence of H₂S decreased the concentrations of perhydroacridine and dicyclohexylmethane and increased that of octahydroacridine. The presence of H2S depressed the hydrogenation of octahydroacridine to perhydroacridine and resulted in a reduced

Table 1. The Effects of H₂S on Hydrodenitrogenation

Compound	Catalyst	Reaction temperature	H ₂ S pressure	H ₂ S/H ₂ ratio	Effect ^{a)}	Reference
		°C	kPa			
Acridine	Mo/Al ₂ O ₃	280—380	0.3	0.0008	_	1
Carbazole	Mo/Al_2O_3	280—360	0.3	0.0003	_	2
Acridine	NiMo/Al ₂ O ₃	280—340	0.1 - 7	$1.1 - 79 \times 10^{-5}$	_	Present work
Acridine	NiMo/Al ₂ O ₃	300—380	17.8	0.003	+-	Present work
Quinoline	NiMo/Al ₂ O ₃	350—390	13.8-110	$2-16\times10^{-2}$	+-	3,4
Quinoline	NiMo/Al ₂ O ₃	400	0.25	0.052	+	5
SCRII	CoMo/Al ₂ O ₃	400	0.84	0.1	+	7
Benzophenone	MoS_2	200	7.5	1	++	8

a) +, promoting effect; -, depressing effect; +-, a slightly promoting or depressing effect depends on reaction temperature.

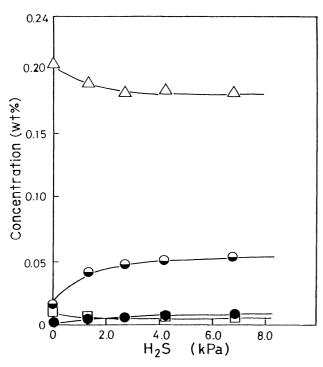


Fig. 1. The effect of H₂S on acridine hydrodenitrogenation on the sulfided NiMo/Al₂O₃ catalyst at 330 °C and 10.1 MPa total pressure. ●, 1,2,3,4,5,6,7,8-octahydroacridine; ⊕, perhydroacridine; △, dicyclohexylmethane; □, benzylcyclohexane

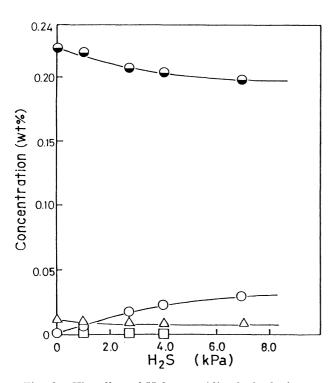


Fig. 2. The effect of H₂S on acridine hydrodenitrogenation on the sulfided NiMo/Al₂O₃ catalyst at 280 °C and 10.1 MPa total pressure. O, *cis*- and *trans*-1,2,3,4,4a,9,9a,10-octahydroacridines; See Fig. 1 for other symbols.

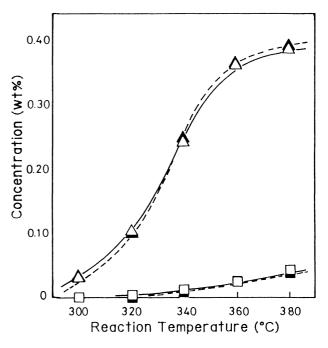


Fig. 3. The hydrodenitrogenation of acridine on the sulfided NiMo/Al₂O₃ catalyst at 10.1 MPa total pressure when 0.3 kPa (3×10⁻⁵ $P_{\rm H_2S}/P_{\rm H_2}$) (---) and 17.8 kPa (0.003 $P_{\rm H_2S}/P_{\rm H_2}$ ratio) (—) of H₂S were added to the feed; See Fig. 1 for symbols.

C–N hydrogenolysis at lower temperature. These results suggest that the stability of the surface of the sulfided catalyst is probably changed at the reaction temperature.

In order to determine the effect of H₂S on C-N hydrogenolysis at a high ratio of $P_{\text{H}_2\text{S}}/P_{\text{H}_2}$, the study was carried out at 10.1 MPa total pressure and an H₂S/H₂ ratio of 0.003. The concentration of dicyclohexylmethane was slightly increased at 380°C and remained unchanged up to 360°C. In this case, the presence of H₂S slightly increased the C-N hydrogenolysis at high temperature, but remained unchanged at low temperature. This observation is in agreement with the results obtained by Satterfield and coworkers3,4) in studies of the hydrodenitrogenation of pyridine and quinoline at 6.9 MPa total pressure and the $P_{\rm H_2S}/P_{\rm H_2}$ ratio of 0.002. Yan et al.⁵⁾ reported the promoting effect of H2S on quinoline hydrodenitrogenation at a H₂S/H₂ ratio of 0.052. Hirschon and Lain⁸⁾ also reported the promoting effect on SRCII hydroliquefaction over a CoMo/Al₂O₃ catalyst at a H₂S/H₂ ratio of 0.1. Moreover, Itabashi et al.⁷⁾ found that the presence of H₂S extremely enhanced the reduction of carbonyl compounds to hydrocarbons over a MoS₂ catalyst at 200°C and about 7.5 MPa H₂S pressure. The promoting effect on the hydrodenitrogenation was carried out at a high ratio of H₂S/H₂ (above 0.003). Consequently, the presence of H₂S depressed the C-N hydrogenolysis at a low $P_{\rm H_2S}/P_{\rm H_2}$ ratio of below 7.9×10-4, but promoted C-N hydrogenolysis at a higher ratio. The total C-N hydrogenolysis remains unchanged at a ratio of about 0.003,

though the effect of H2S depends on the reaction temperature. The stability of the sulfided catalyst is probably changed thermodynamically in an H₂S/H₂ atmosphere and at the reaction temperature.

References

- 1) M. Nagai, T. Masunaga, and N. Hanaoka, J. Catal., **101**, 284 (1986).
- 2) M. Nagai, T. Masunaga, and N. Hanaoka, Energy Fuel, 2, 645 (1988).
 - 3) C. N. Satterfield, M. Modell, and J. A. Wilkens, Ind.

Eng. Chem. Process Des. Dev., 19, 154 (1980).

- 4) S. H. Yang and C. N. Satterfield, Ind. Eng. Chem. Process Des. Dev., 23, 20 (1984).
 5) J. W. Yan, T. Wakatsuki, T. Obara, and M. Yamada,
- Sekiyu Gakkaishi, 32, 129 (1989).
- 6) Y. Yoshimura, S. Yoshitomi, K. Ooishi, T. Sato, H. Shimada, N. Matsubayashi, and A Nishijima, Preprints of
- TOCAT, 1, 201 (1990).
 7) T. Takido, Y. Yamane, and K. Itabashi, Yukigousei Kyoukai Shi, 33, 694 (1975).
 - 8) A. S. Hirschon and R. M. Laine, Fuel, 64, 868 (1985).